Indium III oxide CAS 1312-43-2 In2-O3 india Indium oxide In2O3 Indium II oxide indiumoxide in2o3

Place of Origin: Zhejiang,China (Mainland)
Brand Name: MOSINTER
Brand: MOSINTER
CAS: 1312-43-2
Appearance: pale yellow powder
Purity: 99%~99.9999%
Molecular Formula: In2O3
TREO: ≥99%
Molecular weight: 277.6342
Melting point: 2000°C
Density: 7.18 g/mL at 25 °C(lit.)
Alias: In2-O3

inquiry

skype basketAdd to Basket  Edit

Share |

Product Description

Payment & Shipping Terms Supply Capacity
Payment Terms:L/C, D/A, T/TProduction Capacity:50T/Year
Min. Order:15 KilogramPacking:According to customer...
Means of Transport:Ocean, Air, LandDelivery Date:with 7 days

Indium (III) oxide (CAS: 1312-43-2)


ItemIndex %

In2O3

≥99

A1

0.0003

Ag

0.00002

As

0.00006

B

0.00001

Ba

0.00001

Bi

0.00001

Ca

0.0002

Cd

0.0003

Co

0.00001

Cr

0.00001

Cu

0.0002

Fe

0.0003

Mg

0.00001

Mn

0.0001

Mo

0.00002

Ni

0.0002

Pb

0.0004

Sb

0.0002

Si

0.00001

Sn

0.0003

Tl

0.0003

V

0.00001

Zn

0.0003

Indium oxide (In2O3) is a new kind of transparent n-type semiconductor, functional materials with wide band gap width, the smaller the resistivity and high catalytic activity, in the field of photoelectric, catalyst, gas sensor has been widely applied. Dana and indium oxide particles size m level in addition to the above function, also has the nanometer material surface effect, quantum size effect, small size effect and macroscopic quantum tunneling effect, etc.

Physical properties

Crystal structure

Amorphous indium oxide is insoluble in water but soluble in acids, whereas crystalline indium oxide is insoluble in both water and acids. The crystalline form exist in two phases, the cubic (bixbyite type) and rhombohedral (corundum type). Both phases have a band gap of about 3 eV. The parameters of the cubic phase are listed in the infobox. The rhombohedral phase is produced at high temperatures and pressures or when using non-equilibrium growth methods. It has a space group R3c No. 167, Pearson symbol hR30, a = 0.5487 nm, b = 0.5487 nm, c = 0.57818 nm, Z = 6 and calculated density 7.31 g/cm3.

Conductivity and magnetism

Thin films of chromium-doped indium oxide (In2-xCrxO3) are a magnetic semiconductor displaying high-temperature ferromagnetism, single-phase crystal structure, and semiconductor behavior with high concentration of charge carriers. It has possible applications in spintronics as a material for spin injectors.

Thin polycrystalline films of indium oxide doped with Zn are highly conductive (conductivity ~105 S/m) and even superconductive at helium temperatures. The superconducting transition temperature Tc depends on the doping and film structure and is below 3.3 K.

Synthesis

Bulk samples can be prepared by heating indium(III) hydroxide or the nitrate, carbonate or sulfate. Thin films of indium oxide can be prepared bysputtering of indium target in argon/oxygen atmosphere. They can be used as diffusion barriers ("barrier metals") in semiconductors, e.g. to inhibitdiffusion between aluminium and silicon.

Monocrystalline nanowires were synthetized from indium oxide by laser ablation, allowing precise diameter control down to 10 nm. Field effect transistorswere fabricated from those. Indium oxide nanowires can serve as sensitive and specific redox protein sensors. Sol-gel method is another way to prepare the nanowires.

Indium oxide can serve as a semiconductor material, forming heterojunctions with p-InP, n-GaAs, n-Si, and other materials. A layer of indium oxide on a silicon substrate can be deposited from an indium trichloride solution, a method useful for manufacture of solar cells.

Reactions

When heated to 700°C Indium(III) oxide forms In2O, (called indium(I) oxide or indium suboxide), at 2000°C it decomposes. It is soluble in acids but not in alkali. With ammonia at high temperature indium nitride is formed 

In2O3 +2NH3 → 2InN + 3H2O

With K2O and indium metal the compound K5InO4 containing tetrahedral InO45– ions was prepared.[15] Reacting with a range of metal trioxides produced perovskites for example:- In2O3 +Cr2O3 -> 2InCrO3

Applications

Indium oxide is used in some types of batteries, thin film infrared reflectors transparent for visible light (hot mirrors), some optical coatings, and some antistatic coatings. In combination with tin dioxide, indium oxide forms indium tin oxide (also called tin doped indium oxide or ITO), a material used for transparent conductive coatings.

In semiconductors, indium oxide can be used as an n-type semiconductor used as a resistive element in integrated circuits.

In histology, indium oxide is used as a part of some stain formulations.

Package:50 kg/drum, inner double plastic bag; Or 50 kg/bag, double plastic bag; Can also according to customer requirements packaging.

Category: Rare Earth and Rare Metals


«
Offline Showroom in USA
QR Code